
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2011

Fuzzy set and cache-based approach for bug
triaging
Ahmed Tamrawi
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Tamrawi, Ahmed, "Fuzzy set and cache-based approach for bug triaging" (2011). Graduate Theses and Dissertations. 12230.
https://lib.dr.iastate.edu/etd/12230

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12230?utm_source=lib.dr.iastate.edu%2Fetd%2F12230&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Fuzzy set and cache-based approach for bug triaging

by

Ahmed Y. Tamrawi

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Tien N. Nguyen, Major Professor

Jennifer Davidson
Morris Chang

Iowa State University

Ames, Iowa

2011

Copyright c© Ahmed Y. Tamrawi, 2011. All rights reserved.

www.manaraa.com

ii

DEDICATION

To the four pillars of my life: my parents, my wife, and my sisters. Without you, my life

would fall apart. I might not know where the life’s road will take me, but walking with You,

through this journey has given me strength.

Mom, you have given me so much, thanks for your faith in me, and for teaching me that I

should never surrender.

Daddy, you always told me to reach for the stars. I think I got my first one. Thanks for

inspiring my love for computer.

Salwa, you are everything to me, without your love and understanding I would not be able

to make it.

Alaa, Hanaa, and Aseel, you are the stars shining my sky and lightening my way to success

and without you I would have never made it this far in life.

May Allah keep you all safe and happy.

We made it...

www.manaraa.com

iii

TABLE OF CONTENTS

DEDICATION . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

ACKNOWLEDGEMENTS . vii

ABSTRACT . viii

CHAPTER 1 Introduction . 1

1.1 An Overview of Bug Reports . 2

1.2 Bugzie Overview . 2

1.3 Thesis Contribution . 3

1.4 Thesis Organization . 4

CHAPTER 2 Empirical Study and Motivation 5

2.1 Data Collection . 5

2.1.1 Bug Reports Pre-Processing . 6

2.2 A Motivating Example . 6

2.3 Implications and our Approach . 7

2.4 Locality of Fixing Activity . 9

2.4.1 Implications . 10

CHAPTER 3 Bugzie Model . 11

3.1 Overview . 11

3.2 Association of Fixer and Term . 12

3.3 Fixer Candidate and Term Selection . 15

www.manaraa.com

iv

3.3.1 Selection of Fixer Candidates . 15

3.3.2 Selection of Descriptive Terms . 15

CHAPTER 4 Bugzie’s Algorithms . 17

4.1 Initial Training . 17

4.2 Recommending . 17

4.3 Updating . 18

CHAPTER 5 Empirical Evaluation . 20

5.1 Experiment Setup . 20

5.2 Selection of Fixer Candidates . 21

5.3 Selection of Terms . 25

5.4 Selection of Developers and Terms . 28

5.5 Comparison Results . 31

5.6 Discussions and Comparisons . 34

5.7 Threats to Validity . 37

CHAPTER 6 Related Work and Conclusions 38

6.1 Related Work . 38

6.2 Conclusions . 40

Bibliography . 42

www.manaraa.com

v

LIST OF TABLES

Table 2.1 Statistics of All Bug Report Data . 6

Table 2.2 Percentage of Actual Fixers having Recent Fixing Activities 10

Table 3.1 Term Selection for Eclipse’s developers 16

Table 5.1 Eclipse: Accuracy - Various Parameters 29

Table 5.2 FireFox: Accuracy - Various Parameters 29

Table 5.3 FreeDesktop: Accuracy - Various Parameters 29

Table 5.4 Top-1 Prediction Accuracy (%) . 30

Table 5.5 Top-5 Prediction Accuracy (%) . 30

Table 5.6 Processing Time Comparison . 30

Table 5.7 3-Year Fixing History Data . 31

Table 5.8 Comparison of Top-1 Prediction Accuracy (%) 32

Table 5.9 Comparison of Top-5 Prediction Accuracy (%) 32

Table 5.10 Comparison of Training Time (s: seconds, m: minutes, h: hours, d: days) 33

Table 5.11 Comparison of Prediction Time (s: seconds, m: minutes, h: hours, d:

days) . 33

www.manaraa.com

vi

LIST OF FIGURES

Figure 2.1 Bug report #6021 in Eclipse project 6

Figure 2.2 Bug report #0002 in Eclipse project 7

Figure 5.1 Top-1 Accuracy with Various Cache Sizes 22

Figure 5.2 Top-5 Accuracy with Various Cache Sizes 23

Figure 5.3 Processing Time with Various Cache Sizes 24

Figure 5.4 Top-1 Accuracy - Various Term Selection 26

Figure 5.5 Top-5 Accuracy - Various Term Selection 27

Figure 5.6 Processing Time - Various Term Selection 28

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my sincere thanks to those who helped me

with various aspects of conducting research and the writing of this thesis. First and foremost,

Dr. Tien N. Nguyen for his guidance, patience and support throughout this research and the

writing of this thesis. His insights and words of encouragement have often inspired me and

renewed my hopes for completing my graduate education.

Second, Tung T. Nguyen for his great help throughout this research and the writing of this

thesis.

I would also like to thank my committee members for their efforts and contributions: Dr.

Morris Chang, and Dr. Jennifer Davidson.

Special thanks for my research group Jafar, Hoan, Tuan Anh, and Hung for their support

and help throughout my research.

Finally, I would like to thank all my family members and friends for their love and support

www.manaraa.com

viii

ABSTRACT

Software bugs are inevitable and bug fixing is an essential and costly phase during software

development. Such defects are often reported in bug reports which are stored in an issue

tracking system, or bug repository. Such reports need to be assigned to the most appropriate

developers who will eventually fix the issue/bug reported. This process is often called Bug

Triaging.

Manual bug triaging is a difficult, expensive, and lengthy process, since it needs the bug

triager to manually read, analyze, and assign bug fixers for each newly reported bug. Triagers

can become overwhelmed by the number of reports added to the repository. Time and efforts

spent into triaging typically diverts valuable resources away from the improvement of the

product to the managing of the development process.

To assist triagers and improve the bug triaging efficiency and reduce its cost, this thesis

proposes Bugzie, a novel approach for automatic bug triaging based on fuzzy set and cache-

based modeling of the bug-fixing capability of developers. Our evaluation results on seven

large-scale subject systems show that Bugzie achieves significantly higher levels of efficiency

and correctness than existing state-of-the-art approaches. In these subject projects, Bugzie’s

accuracy for top-1 and top-5 recommendations is higher than those of the second best approach

from 4-15% and 6-31%, respectively as Bugzie’s top-1 and top-5 recommendation accuracy is

generally in the range of 31-51% and 70-83%, respectively. Importantly, existing approaches

take from hours to days (even almost a month) to finish training as well as predicting, while

in Bugzie, training time is from tens of minutes to an hour.

www.manaraa.com

1

CHAPTER 1 Introduction

A key collaborative hub for many software projects is a database of reports describing both

bugs that need to be fixed and new features to be added[11]. This database is often called a

bug repository [39] or issue tracking system. Such repositories determine which developer has

expertise in different areas of the product, and it can help improve the quality of the software

produced.

However, the use of a bug repository also has a cost. Developers can become overwhelmed

with the number of reports submitted to the bug repository as each report needs to be assigned

to the most appropriate developer who will be able to fix it. This process is known as bug

triaging [2]. Each bug report is triaged to determine if it describes a valid problem and if so,

the asignee of the bug needs to handle this bug into the development process by fixing the

reported issues.

Manual bug triaging is a difficult, expensive, and lengthy process, since it needs the person

who triages the reports - the bug triager - to manually read, analyze, and assign bug fixers

for each newly reported bug. To assist triagers and support developers with the development-

oriented decision they make during triage activities, this thesis proposes Bugzie, a novel fuzzy

set and cache-based approach for automatic bug triaging.

The rest of this chapter proceeds as follows. First, we provide a brief overview of bug

reports, followed by a brief overview of Bugzie, our automatic bug triaging approach. We

conclude by outlining the contributions of this work.

www.manaraa.com

2

1.1 An Overview of Bug Reports

A bug report contains a variety of information. Some of the information is categorical such

as the report’s identification number, its resolution status (i.e., new, unconfirmed, resolved),

the product component the report is believed to involve and which developer has been given

responsibility for the report. Other information is descriptive, such as the title of the report,

the description of the report and additional comments, such as discussions about possible

approaches to resolving the report. Finally, the report may have other information, such as

attachments or a list of reports that need to be addressed before this report can be resolved.

1.2 Bugzie Overview

Bugzie considers a software system to have a collection of technical aspects/concerns, which

are described via the corresponding technical terms appearing in software artifacts. Among the

artifacts, a bug report describes an issue(s) related to some technical aspects/concerns via the

corresponding technical terms. Thus, a potential/capable/relevant fixer for that report is the

one that has bug-fixing capability/expertise/knowledge on the reported aspects. Therefore, in

Bugzie, the key research question is that:

Given a bug report, how to determine who have the most bug-fixing capability/expertise with

respect to the reported technical aspect(s).

The key idea of Bugzie is to model the fixing correlation/association of developers toward a

technical aspect via fuzzy sets [24]. The fixing correlation/association represents the bug-fixing

capability/expertise of developers with respect to the technical aspects in a project, in which

the fuzzy sets are defined for the corresponding technical terms and built based on developers’

past fixing bug reports and activities. Then, Bugzie recommends the most potential fixer(s)

for a new bug report based on such information.

For a specific technical term t, a fuzzy set Ct is defined to represent the set of developers

who have the bug-fixing expertise relevant to t, i.e. the most capable/competent ones to fix the

bugs on the technical aspects described via the term t. The membership score of a developer d

to Ct, i.e. the degree of certainty that d is a capable fixer for the bugs on the technical aspect(s)

www.manaraa.com

3

corresponding to t, is calculated via the similarity of the set of fixed bug reports containing t,

and the set of bug reports that d has fixed. That is, the more distinct and prevalent the term

t in the bug reports d has fixed, the higher the degree of certainty that d is a competent fixer

for the technical issues corresponding to t. Then, for a new bug report B, the fuzzy set CB of

capable developers toward technical aspects reported in B is modeled by the union set of all

fuzzy sets (over developers) corresponding to all terms extracted from B.

To cope with the large numbers of active developers and technical terms in large and

long-lived projects, Bugzie has two design strategies on selecting the suitable fixer candidates

and significant terms for the computation. Conducting an empirical study on several bug

databases of real-world projects, we discovered the locality of the fixing activity: ”the recent

fixing developers are likely to fix bug reports in the near future”. For example in Eclipse, 81%

of actual fixers belong to the 10% developers having the most recent fixing activities. Thus,

we propose to select a portion of recent fixers as the candidates for fixing a new bug report. In

addition, instead of using all extracted words as terms for the computation, Bugzie is flexible

to use only the terms that are highly correlated with each developer as the most significant

terms to represent her/his fixing expertise.

To adapt with software evolution, Bugzie updates its model regularly (e.g. the lists of fixer

candidates and terms, and the membership scores) as new information is available. We will

discuss our approach and algorithms in details in chapters 3 and 4.

1.3 Thesis Contribution

This Thesis provides the following key contributions:

1. A scalable, fuzzy set and cache-based automatic bug triaging approach, which is signifi-

cantly more efficient and accurate than existing state-of-the-art approaches;

2. The finding of the locality of fixing activity: one of the recent fixers is likely to be the

fixer of the next bug report;

www.manaraa.com

4

3. A comprehensive evaluation on the efficiency and correctness of Bugzie in comparison

with existing approaches;

4. An observation/method to capture a small and significant set of terms describing devel-

opers’ bug-fixing expertise.

5. A benchmark (bug datasets) and a tool-set for potential reproduced and enhanced ap-

proaches.

1.4 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we introduce the process

of collecting our dataset and present an empirical study and a motivating example for our

approach. Chapter 3 describes our approach for bug triaging in details. Chapter 4 describes

the algorithms used in our approach. Chapter 5 presents our empirical evaluation and the

comparison of our results to the state-of-the-art approaches. Chapter 6 discusses some related

work and concludes the thesis.

www.manaraa.com

5

CHAPTER 2 Empirical Study and Motivation

In this chapter, we will describe our data collection process for the study (section 2.1).

Then, a case study example is presented to motivate our philosophy on the correlation be-

tween the fixing developers and the technical aspects reported in the bug reports (sections 2.2

and 2.3). Finally, we will present in detail our empirical study in which we found an impor-

tant characteristic on the locality of bug fixing activities of developers (section 2.4). We will

utilize these findings in the development of our approach and use the collected datasets for the

evaluation.

2.1 Data Collection

Our datasets contain bug reports, corresponding fixers, and related information (e.g. sum-

mary, description, and creation/fixing time). Table 2.1 shows our collected datasets of seven

projects: FireFox[14], Eclipse[13], Apache[3], Netbeans[30], FreeDesktop[16], Gcc[17], and

Jazz. All bug reports and their data are available and downloaded from the bug tracking

systems of the corresponding projects, except that Jazz data is available for us as a grant from

IBM Corporation. We collected bug records noted as fixed and closed. Duplicated and unre-

solved (open) bug reports were excluded. Re-opened/un-finished bug fixes were not included

either.

In Table 2.1, Column Time shows the time period of the fixed bug reports. Columns Report

and Fixer show the number of fixed bug reports and that of the corresponding fixing developers,

respectively. Two very large datasets (Eclipse and FireFox) have nearly two hundreds of

thousands reports and thousands of bug fixers. The other datasets have between 20-50K

records and 150-1,700 fixers.

www.manaraa.com

6

Project Time Report Fixer Term

Firefox 04/07/1998 - 10/28/2010 188,139 3,014 177,028

Eclipse 10/10/2001 - 10/28/2010 177,637 2,144 193,862

Apache 05/10/2002 - 01/01/2011 43,162 1,695 110,231

NetBeans 01/01/2008 - 11/01/2010 23,522 380 42,797

FreeDesktop 01/09/2003 - 12/05/2010 17,084 374 61,773

Gcc 08/03/1999 - 10/28/2010 19,430 293 63,013

Jazz 06/01/2005 - 06/01/2008 34,228 156 39,771

Table 2.1: Statistics of All Bug Report Data

2.1.1 Bug Reports Pre-Processing

For each bug report, we extracted its unique bug ID, the actual fixing developer’s ID, email

address, creation and fixing time, summary, and full description. Comments and discussions

are excluded. We merged the summary and description of each bug report. Then, using

WVTool[40], we extracted their terms and preprocessed them, such as stemming for term

normalization and removing grammatical and stop words. Column Term in Table 2.1 shows

the total numbers of terms in all datasets.

2.2 A Motivating Example

Let us present a motivating example in our collected bug reports that leads to our ap-

proach for automatic bug triaging. Figure 2.1 depicts a bug report from Eclipse dataset, with

the relevant fields including 1) a unique identification number of the report (ID), the fixing

date (FixingDate), the fixing developer (AssignedTo), a short summary (Summary), and a full

description (Description) of the bug.

ID:006021

FixingDate:2002-05-08 14:50:55 EDT

AssignedTo:James Moody

Summary:New Repository wizard follows implementation model, not user model.

Description:The new CVS Repository Connection wizard’s layout is confusing. This is be-

cause it follows the implementation model of the order of fields in the full CVS location path

rather than the user model...

Figure 2.1: Bug report #6021 in Eclipse project

www.manaraa.com

7

The bug report describes an issue that the layout of the wizard for CVS repository connec-

tion was not properly implemented. Analyzing Eclipse’s documentation, we found that this

issue is related to a technical aspect: version control and management (VCM) for software

artifacts. This aspect of VCM can be recognized in the report’s contents via its descriptive

terms such as CVS, repository, connection, and path. It is project-specific since not all systems

have it. Checking the corresponding fixed code in Eclipse, we found that the bug occurred

in the code implementing an operation of VCM: CVS repository connection. The bug was

assigned to and fixed by a developer named James Moody.

Searching and analyzing other Eclipse’ bug reports, we found that James Moody also fixed

several other VCM-related bugs, for example, bug #0002 (Figure 2.2). The description states

that the system always used its default editor to open any resource file (e.g. a GIF file)

regardless of its file type. This aspect of VCM is described via the terms such as repository,

resource, and editor. This observation suggests that James Moody probably has the expertise,

knowledge, or capability with respect to fixing the VCM-related bugs in Eclipse.

ID:000002

FixingDate:2002-04-30 16:30:46 EDT

AssignedTo:James Moody

Summary:Opening repository resources doesn’t honor type.

Description:Opening repository resource always open the default text editor and doesn’t

honor any mapping between resource types and editors. As a result it is not possible to view

the contents of an image (*.gif file) in a sensible way....

Figure 2.2: Bug report #0002 in Eclipse project

2.3 Implications and our Approach

The example in previous section suggests us the following:

1. A software system has several technical aspects. Each could be associated with some

descriptive technical terms. A bug report is related to one or multiple technical aspects.

2. If a developer frequently fixes the bugs related to a technical aspect, we could consider

her/him to have bug-fixing expertise/capability on that aspect, i.e., (s)he could be a

www.manaraa.com

8

capable/competent fixer for a future bug related to that aspect.

Based on those two implications, we approach to solve the problem of automated bug

triaging using the following key philosophy:

”Who have the most bug-fixing capability/expertise with respect to the reported technical

aspect(s) in a given bug report should be the fixer(s)”.

Since technical aspects could be described via the corresponding technical terms, our so-

lution could rely on the modeling of the fixing capability of a developer toward a technical

aspect via the association/correlation of that developer with the technical terms for that aspect.

Specifically, we will determine the most capable developers toward a technical aspect in the

project based on their past fixing activities. Then, when a new bug is reported, we will rec-

ommend those developers who are most capable of fixing the corresponding technical issue(s)

in the given bug report.

Our philosophy is different from existing approaches to automatic bug triaging [2, 7, 10, 28].

The philosophy from existing machine learning (ML)-based approaches [2, 7] is that if a new

bug report is closest in characteristics/similarity with a set of bug reports fixed by a developer,

(s)he should be suggested. That is, they characterize the classes of bug reports that each

developer has fixed, and then classify a new bug report based on that classification. Another

philosophy is from existing ML and information retrieval (IR) approaches [28, 10], which aim

to profile a developer’s expertise by a set of characteristic features (e.g. terms) in her/his fixed

bug reports, and then match a new bug report with such profiles to find the fixer(s).

Our approach is centered around the association/correlation between two sets, developers

and terms. Thus, in order to determine the most capable fixers with respect to the technical

aspect(s) in a bug report, we have to address the questions of how to make the selections and

take into account relevant terms and developers.

As shown in Table 2.1, for large projects with long histories, the numbers of terms (after

stemming and filtering) are still very large (e.g. 200K words for FireFox). More importantly,

not all terms appearing in a bug report would be technically meaningful and relevant to the

fixers or reported technical issues. Thus, using all of them would be computationally expensive,

www.manaraa.com

9

and even worse, might reduce the fixer recommendation accuracy by introducing noise to the

ranking. The motivating example suggests that such term selection could be based on the level

of association, i.e. a term having high correlation with some developers could be a significant

term for bug triaging, e.g. the association of repository and James Moody (Details will be

presented in Chapter 3).

The selection of developers is also needed because in a large and long-lived project, the

number of developers could be large and some might not be as active in certain technical areas

as others any more. Moreover, considering all developers as the fixer candidates for a bug

report could be computationally costly.

Next, we will describe an empirical study that motivates our developers’ selection strategy.

2.4 Locality of Fixing Activity

Analyzing several bug reports fixed by the same person in our datasets, we found that (s)he

tends to have recent fixing activities. For example in Eclipse dataset, bug reports #312322,

#312291, #312466, and #311848 were fixed by the same fixer Darin Wright in two days 05/10

and 05/11/2010. We hypothesize that:

The fixing activity has locality, i.e. a developer having recent fixing activities has higher

tendency to fix some newly bug reports than developers with less recent fixing ones (the recent

fixing developers are likely to fix bug reports in the near future).

To validate this hypothesis, we have conducted an experiment in which we analyzed the

collected datasets to compute how often a fixer of a bug report is the one who has some recent

fixing activity. First, we chronically sorted the bug reports in a project by their fixing time.

For a bug report b that was fixed at time t by a developer d, we sorted all developers having

fixing activities before t based on their most recent fixing time, i.e. a developer performing a

fix more recently to time t was sorted higher. Then, if d belongs to the top x% fixers of that

list, we count this as a hit. Finally, we compute p(x) as the percentage of hits over the total

number of analyzed bug reports.

Table 2.2 shows the experiment result for all projects. As seen, it is consistent in all systems

www.manaraa.com

10

Recent Eclipse Firefox Jazz Gcc Apache FreeDesktop NetBeans

10% 81% 82% 62% 84% 71% 73% 69%

20% 87% 92% 74% 92% 81% 89% 87%

30% 92% 96% 83% 95% 89% 94% 94%

40% 96% 97% 92% 97% 92% 96% 96%

50% 98% 98% 97% 98% 94% 97% 97%

60% 98% 98% 99% 98% 95% 98% 98%

70% 99% 98% 99% 98% 96% 98% 98%

80% 99% 98% 100% 99% 96% 98% 98%

90% 99% 98% 100% 99% 96% 98% 98%

100% 99% 98% 100% 99% 96% 98% 99%

Table 2.2: Percentage of Actual Fixers having Recent Fixing Activities

that p(x) is rather large even at small x. For example in Eclipse, at x = 10%, p(x) = 81% , i.e.

in around 81% of the cases, the fixer of a bug report is in the top 10% of the developers who

have most recent fixing activities. At x = 50%, p(x) exceeds 97% in 6 systems. Note that, at

x = 100%, p(x) could not reach 100% since there are always new fixers who have no historical

fixing activity, thus, (s)he does not belong to the list of developers with recent fixing activities.

2.4.1 Implications

The experiment result confirms our hypothesis on the locality of fixing activity. This result

suggests that: instead of selecting all available developers as fixer candidates for a bug report,

we could select a small portion of them based on their recent fixing activities. This selection

would significantly improve time efficiency without losing much accuracy.

Next, we will discuss in detail Bugzie, our automatic bug triaging approach.

www.manaraa.com

11

CHAPTER 3 Bugzie Model

3.1 Overview

In Bugzie, the problem of automatic bug triaging is modeled as follows:

Given a bug report, find the developer(s) with the most fixing capability/expertise with

respect to the reported technical issue(s).

Existing approaches view this problem as a classification problem: each developer is con-

sidered as a class for bug reports in which their characteristics are learned via her/his past

fixed reports. An unfixed bug report will be assigned to the developer(s) corresponding to the

most relevant/similar class(es) to the report.

In contrast, Bugzie considers this as a ranking problem:

For each given bug report, Bugzie determines a ranked list of developers who are most

capable of handling the reported technical issue(s).

Thus, instead of learning the characteristics of each class/developer based on her/his past

fixed reports, Bugzie determines and ranks the fixing capability/expertise of the developers

toward the technical aspects by modeling the correlation/association of a developer and a tech-

nical aspect. That is, if a developer has higher fixing correlation with a technical aspect, (s)he is

considered to have higher capability/expertise on that aspect, and (s)he will be ranked higher.

Because ”technical aspect” is an abstract concept, with potential different levels of gran-

ularity, Bugzie models them via their corresponding descriptive technical terms. That is, a

technical aspect is considered as a collection of technical terms that are extracted directly from

the software artifacts in a project, and more specifically from its bug reports.

Bugzie utilizes the fuzzy set theory [24] to model the fixing correlation/association between

www.manaraa.com

12

developers and the technical terms/aspects, which is used to recommend the most capable

fixers for a given bug report. Bugzie also uses the locality of fixing activity to select the fixer

candidates, and uses the levels of correlation between the fixers and terms to identify the most

correlated/important terms for each developer.

3.2 Association of Fixer and Term

Definition 1 (Capable Fixer toward A Term) For a specific technical term t, a fuzzy set

Ct, with associated membership function µt(), represents the set of capable fixers toward t, i.e.

developers who have the bug-fixing expertise relevant to technical aspect(s) described by t.

In fuzzy set theory, fuzzy set Ct is determined via a membership function µt with the values

in the range of [0,1]. For a developer d, the membership score µt(d) determines the certainty

degree of the membership of d in Ct, i.e. how likely d belongs to the fuzzy set Ct. In this

context, µt(d) determines the degree to which d is capable of fixing the bug(s) relevant to the

technical aspect(s) associated with t. The membership score also determines the ranking, i.e.

if µt(d) > µt(d
′) then d is considered to be more capable than d′ in the issues related to t.

µt(d) is calculated based on d’s past fixing activities as follows:

Definition 2 (Membership Score toward a Term) The membership score µt(d) is calcu-

lated as the correlation between the set Dd of the bug reports d has fixed, and the set Dt of the

bug reports containing term t:

µt(d) =
|Dd ∩Dt|
|Dd ∪Dt|

=
nd,t

nt + nd − nd,t

In this formula, nd, nt, and nd,t are the number of bug reports that d has fixed, the number

of reports containing the term t, and that with both, respectively (counted from the available

training data, i.e. given fixed bug reports).

With this formula, the value of µt(d) ∈ [0, 1]. The higher µt(d) is, the higher the degree

that d is a capable fixer for the bugs related to term t. If µt(d) = 1, then only d had fixed the

bug reports containing t, thus, d is highly capable of fixing the bugs relevant to the technical

www.manaraa.com

13

aspects associated with term t. If µt(d) = 0, d has never fixed any bug report containing t,

thus, might not be the right fixer with respect to t. In general cases, the more frequently a

term t appears in the reports that developer d has fixed, the higher µt(d) is, i.e. the more

likely that developer d has fixing expertise toward the technical aspects associated to t.

The membership value µt(d), representing the fixing correlation of a developer toward a

technical term, is an intrinsically gradual notion, rather than a concrete one as in conventional

logic. That is, the boundary for the set of developers who are capable of fixing the bug(s)

relevant to a term t is fuzzy.

The membership score formula in Definition 2 allows Bugzie to favor (rank higher) the

developers who have emphasized fixing activities toward some technical aspect/term t (i.e.

specialists) over the ones with less specialization with their fixing activities on multiple other

technical issues (i.e. generalists). That is, if both d and d′ have similar levels of fixing activities

on t, i.e. nd,t and nd′,t are similar, but d′ fixes on several other technical issues while d mostly

emphasizes on t, then nd′ will be much larger than nd, and µt(d
′) will be smaller than µt(d).

Thus, Bugzie will favor the specialist d.

Because a bug report might contain multiple technical issues/aspects, and each technical

aspect could be expressed via multiple technical terms, Bugzie needs to model the capable

fixers with respect to a bug report based on their correlation values toward its associated

terms. This is done using the union operation in fuzzy set theory as follows.

Definition 3 (Capable Fixer for a Bug Report) For a given bug report B, fuzzy set CB,

with associated membership function µB(), represents the set of capable fixers for B, i.e. the

developers who have the bug-fixing expertise relevant to technical aspect(s) reported in B. CB

is computed as the union of the fuzzy sets for the terms extracted from B

CB =
⋃
t∈B

Ct

In fuzzy set theory, union is a flexible combination, i.e. the strong membership to some

sub-fuzzy set(s) will imply the strong membership to the combined fuzzy set. Especially, the

more the sub-fuzzy sets with strong membership degrees, the stronger the membership of the

www.manaraa.com

14

combined fuzzy set is. According to [24], the membership score of the union set CB is calculated

as the following:

Definition 4 (Membership Score for a Report) The membership score µB(d) is computed

as the combination of the membership scores µt(d) of its associated terms t:

µB(d) = 1−
∏
t∈B

(1− µt(d))

µB(d) represents the fixing correlation of d toward bug report B. As seen, µB(d) is also

within [0,1] and represents the degree in which developer d belongs to CB, i.e. the set of

capable fixers of the bug(s) reported in B. The value µB(d) = 0 when all µt(d) = 0, i.e. d has

never fixed any report containing any term in B. Thus, Bugzie considers that d might not be

as suitable as others in fixing technical issues reported in B. Otherwise, if there is one term

t with µt(d) = 1, then µB(d) = 1, and d is considered as the capable developer (since only d

has fixed bug reports with term t before). In general cases, the more the terms in B with high

µt(d) scores, the higher µB(d) is, i.e. the more likely d is a capable fixer for bug report B.

Using this formula, after calculating fixing correlation scores µB(d)s for candidate developers,

Bugzie ranks and recommends the top-scored developers as the most capable fixers for bug

report B.

The union operation allows Bugzie to take into account the co-occurring/correlated terms

associated with some technical aspects and reduce the impact of noises. Generally, a technical

aspect could be expressed in some technical terms, such as the concern of version control in

Eclipse might be associated with terms like t = repository and t′ = cvs. Thus, these two terms

tend to co-occur in the bug reports on version control and if a concrete bug report B contains both

terms, B should be considered to be more relevant to version control than the ones containing

only one term. That means, if d is a developer with fixing expertise in version control, µt(d)

and µt′(d) should be equally high, and µB(d) must be higher than either of them. Those are

actually true in our model. Since t and t′ tend to co-occur, bug reports contain t, including

the ones fixed by d, might also contain t′. Thus, two sets Dt and Dt′ are similar, and because

d has fixing expertise on version control, µt(d) and µt′(d) will be similarly high. Assume that

www.manaraa.com

15

µt(d) = 0.7 and µt′(d) = 0.6. Then, µB(d) = 1 - (1-0.7)*(1-0.6) = 0.88, i.e. higher than µt(d)

and µt′(d).

Value µB(d) is not affected much by noises, i.e. the terms irrelevant to developers’ exper-

tise/technical aspects (e.g. misspelled words). Assume that B contains t and a noise e. Since

e rarely occurs in the bug reports a developer d fixed, d has small membership score toward e,

e.g. 0.1. Then, µB(d)=1-(1-0.7)*(1-0.1)= 0.73, i.e. not much larger than µt(d)= 0.7.

3.3 Fixer Candidate and Term Selection

In this section, we discuss our design strategies in Bugzie to select the suitably small sets

of candidate fixers and significant/relevant terms to reduce the computation.

3.3.1 Selection of Fixer Candidates

The locality of fixing activity suggests:

The actual fixer for a given bug report is likely the one having recent fixing activity.

Thus, for each bug report, Bugzie chooses the top x% of developers sorted by their latest

fixing time as the fixer candidates F (x) for its computation. This is a trade-off between

performance and accuracy. If x = 100%, all developers will be considered, accuracy could be

higher, however, running time will be longer. Importantly, in general cases, the locality of

fixing activity suggests that the loss in accuracy is acceptable. For example, from Table 2.2,

by selecting x = 50%, we could reduce in half the computation time, while losing at most 1-3%

of accuracy for all subject systems (by comparing the numbers in 50% and 100% lines).

3.3.2 Selection of Descriptive Terms

Following its fuzzy-based modeling, Bugzie measures the significance/descriptiveness based

on the fixing correlation, i.e. the membership scores. That is, for a developer d and a term t,

the higher their correlation score µt(d), the higher significance of t in describing the technical

aspects that d has fixing capability/expertise. Thus, Bugzie selects the descriptive terms as

follows. For each developer d, it sorts the terms in the descending order based on the correlation

www.manaraa.com

16

scores µt(d), and selects the top k terms in the sorted list as the significant terms Td(k) for

developer d. The collection T (k) of all such terms selected for all developers is considered

as the set of technical terms for the whole system. Then, when recommending, Bugzie uses

only those terms in its ranking formula. In other words, if a term extracted from the bug

report under consideration does not belong to that list, Bugzie will discard it in the formulas

in Section 3.2.

Table 3.1 shows such lists of top-10 terms having highest correlation scores with some

Eclipse’s developers produced by our tool. As seen, Bugzie discovers that James Moody has

many fixing activities toward VCM technical aspect.

Ed Merks Darin Wright Tod Creasey James Moody

xsd debug marker outgoing

ecore breakpoint progress vcm

xsdschema launch decoration itpvcm

genmodel console dialog repository

emf vm workbench history

xsdecorebuild memory background ccv

xmlschema jdi font team

eobject suspend view cvs

xmlhandler config ui merge

ecoreutil thread jface conflict

Table 3.1: Term Selection for Eclipse’s developers

www.manaraa.com

17

CHAPTER 4 Bugzie’s Algorithms

This chapter describes the key algorithms in Bugzie. Given the model in Chapter 3 with two

adjustable parameters x (for fixer candidates) and k (for selected term lists), Bugzie operates

in three main phases: 1) Initial Training, i.e. building the fuzzy sets for the technical

terms collected from the initially available information (e.g. already-fixed bug reports); 2)

recommending, i.e. producing a ranked list of developers capable of fixing an unfixed bug

report, and 3) updating, i.e. updating the fuzzy sets as new information is available (i.e.

newly fixed bug reports).

4.1 Initial Training

In this phase, Bugzie uses a collection of already-fixed bug reports to build its initial

internal data, including 1) the fuzzy sets of capable fixers for the available technical terms, 2)

the fixer candidate list F (x), 3) the individual term lists Td(k), and 4) the system-wide term

list T (k). While modeling the fuzzy sets, it stores only the counting values nd, nt, and nd,t

(see Definition 2) for any available developer d and technical term t. The values µt(d) are

computed on-demand to reduce the memory needed to store membership scores, and make the

updating phase simpler (since only those counting numbers need to be updated).

4.2 Recommending

In this phase, Bugzie recommends the most capable developers for a given unfixed bug

report B. First, it extracts all terms from B and keeps only terms belonging to the selected

term list T (k). Then, it computes the membership scores of all developers in the candidate list

F (x) using Definition 2. The values µt(d) are computed as needed using the counting values

www.manaraa.com

18

nd, nt, and nd,t. Finally, Bugzie ranks those membership scores and recommends the top-n

developers as the most capable fixers for the bug(s) reported in B.

4.3 Updating

In this phase, Bugzie incrementally updates its internal data with newly available informa-

tion (i.e. new bug reports are fixed by some developers). First, it updates the counting values

nd, nt, and nd,t using newly available fixed bug reports by adding new corresponding counts

for the new data. For example, if developer d just fixed a bug report B, Bugzie increases the

counting number nd by 1 and increases nd,t, and nt by 1 for any term t extracted from B. If a

new term or a new developer just appears in new data, Bugzie creates new counting numbers

nt or nd and nd,t.

After updating the counting numbers, Bugzie updates the list F (x), Td(k), and T (k).

Instead of re-sorting all available developers and terms to update those lists, Bugzie uses a

caching strategy: it stores F (x) as a cache (called developer cache). Thus, for each fixed bug

report in the updating data, if the fixer does not belong to the cache, Bugzie will add it to the

cache, and if the cache is full, it will remove from the cache the developer(s) having the least

recent fixing activity.

Similarly, Bugzie also stores Td(k) as caches (called term cache), and updates them based

on the membership scores. Td(k) is stored as a descendingly sorted list. During updating, if

a term t does not belong to the cache and its score µt(d) is larger than that of some term

currently in the cache, Bugzie will insert it to the cache, and if the cache is full, it will remove

the least-scored term.

This updating and caching strategy makes our incremental updating very efficient. Impor-

tantly, it fits well with software evolution nature. The membership score µt(d) is computed

on-demand with the most recently updated counting numbers nd, nt, and nd,t. The cache F (x)

always reflects the developers having most tendency for fixing bugs. The lists Td(k) always con-

sist of the terms having highest association with the developers. Existing approaches are not

sufficiently flexible to support such caches of developers and terms. In Bugzie, during software

www.manaraa.com

19

evolution, time-sensitive knowledge on developers’ fixing activities and important terms can

be taken into account. In future work, other cache replacement strategies as in BugCache [23]

could be explored.

Next, we will describe and discuss our empirical evaluation results on the collected datasets,

and compare it with the state-of-the-art approaches.

www.manaraa.com

20

CHAPTER 5 Empirical Evaluation

We evaluated Bugzie on our collected datasets (Section 2.1), some of which were used in

prior bug triaging research [2, 28, 7]. We evaluated it with various parameters for developers’

and terms’ selections, and compared it with state-of-the-art approaches [12, 2, 28, 7]. All

experiments were run on a Windows 7, Intel Core 2 Duo 2.10Ghz, 4GB RAM desktop.

5.1 Experiment Setup

To simulate the usage of Bugzie in practice, we used the same longitudinal data setup as

in [7]. That is, all extracted bug reports from each bug repository in Table 2.1 were sorted in

the chronological order of creation time, and then divided into 11 non-overlapped and equally

sized frames.

Initially, frame 0 with its bug reports were used in initial training. Then, Bugzie used that

training data to recommend a list of top-n developers to fix the first bug report in frame 1,

BR1,1. After that, we performed updating for our training data with tested bug report BR1,1,

and started recommending for the following bug report in frame 1, BR1,2. After completing

frame 1, the updated training data was then used to test frame 2 in the same manner. We

repeated this until all the bug reports in all frames were consumed.

If a recommendation list for a bug report contains its actual fixer, we count this as a hit

(i.e. a correct recommendation). For each frame under test, we calculated prediction accuracy

as in [7]:

Definition 5 (Prediction Accuracy) The ratio between the number of prediction hits over

the total number of prediction cases.

www.manaraa.com

21

For example, if we have 100 bugs to recommend fixers for and for 20 of those bugs, we could

recommend the actual fixing developer as the first developer in our recommendation list, the

prediction accuracy for Top-1 is 20%; similarly, if the actual fixing developer is in our Top-2

for 60 bugs, the Top-2 prediction accuracy is 60%.

Then, We calculated the average accuracy value on all 10 frames for each choice of the

top-ranked list of n. We also measured the training (initial training and updating) and recom-

mending time.

5.2 Selection of Fixer Candidates

In this experiment, we tuned different options for the selection of fixer candidates (i.e.

developer cache). Recall from Chapter 3 that Bugzie allows to choose x% of top fixers having

most recent fixing activities. We ran it with various values of x%, increasing from 1-100%

(at x=100%, all developers in the project’s history were chosen). For each value of x, we

measured prediction accuracy and total processing time (for training and recommending). The

same process was applied for all datasets in Table 2.1.

Figures 5.1 and 5.2 show the graphs for the top-1 and top-5 prediction accuracy for different

values of x for all datasets. As seen, all graphs exhibit the same behavior. The accuracy peaks

at some value x that is quite smaller than 100%. In all 7 projects, accuracy reaches its peak at

x < 40%. This implies that selecting a suitable portion of recent fixers as candidates actually

does not lessen much the accuracy. In some cases, it improves the prediction accuracy. For

example, in FireFox, at x = 20%, Bugzie has top-5 accuracy of 72.4%, while top-5 accuracy at

x = 100% is only 70.7%, i.e. when considering all available fixers as candidates.

Definitely, selecting only a portion of available fixers as candidates also significantly im-

proves time efficiency. Figure 5.3 displays the total processing time for all systems, which

includes training and prediction time. Since in prediction/recommendation phase, Bugzie just

needs to compute membership scores based on the stored counting values, prediction time is

just a few tens of seconds for all cases. As seen, the processing time for FireFox and Eclipse

is higher than that for other projects due to their large datasets. However, for FireFox, at

www.manaraa.com

22

Figure 5.1: Top-1 Accuracy with Various Cache Sizes

www.manaraa.com

23

Figure 5.2: Top-5 Accuracy with Various Cache Sizes

www.manaraa.com

24

Figure 5.3: Processing Time with Various Cache Sizes

x = 20%, with caching, Bugzie can reduce the processing time around 2.7 times less. The

processing time is also linear with respect to the cache size of fixer candidates.

This result suggests that the selection of fixer candidates (i.e. developer cache) significantly

improve time efficiency because Bugzie just needs to process a smaller number of developers.

In some cases, it even helps improve prediction accuracy. We examined those cases and found

that Bugzie fits well with the nature of the locality in fixing activity: the appropriate cache was

able to capture the majority of actual fixers. Also, it did not include the developers who had

high fixing expertise in some technical aspect in a very long time ago, but do not handle much

that technical issue anymore. When including such developers and their past fixing terms,

ranking could be imprecise since more irrelevant developers and terms are considered. As seen

in Figure 5.2, the appropriate sizes of developer cache depend on individual projects.

www.manaraa.com

25

5.3 Selection of Terms

We conducted a similar experiment for the selection of terms. Bugzie is flexible to allow

the selection of only top-k terms that are most correlated with each fixer via their correla-

tion/membership scores in the ranking process (Definition 2). We ran Bugzie with different

values of k, increasing from 1-5,000. With k=5,000 for each developer, the system-wide term

list T (k) mostly covers all available terms in all bug reports. If a developer has the number

of terms less than k, all of his associated terms with non-zero correlation scores are used. For

each value of k, we measured top-n prediction accuracy and the total processing time. This

procedure was applied for all systems in Table 2.1.

Figures 5.4 and 5.5 show the results of top-1 and top-5 prediction accuracy on all datasets,

with different values of k. As seen, for all projects (except Apache), the graphs have similar

shapes. This exhibits a very interesting phenomenon: accuracy increases and reaches its peak

in the range of 3-20 terms, and when more terms are used, accuracy slightly decreases to a

stable level. Thus, selecting a small yet significant set of terms for ranking computation in fact

improves prediction accuracy. For example, for Eclipse, at k = 16, we have top-5 accuracy of

80%, while at k = 5, 000 (almost all extracted terms are included), top-5 accuracy is only 72%.

This result shows that the selection of terms could improve much prediction accuracy. The

result also suggests that one just needs a small yet significant set of terms for each developer

to describe his bug-fixing expertise. Bugzie with term selection is flexible to capture those

significant terms representing the technical issues handled by each developer. For example,

analyzing Eclipse’s bug reports, we verified the core bug-fixing technical expertise of the fixers

listed in Table 3.1. Bugzie also enables the exclusion of a large number of un-important terms

in bug reports, as well as the terms with small correlation scores to developers. Those terms

could have brought noises to the computation in Bugzie.

More importantly, selecting only a small portion of available terms also significantly im-

proves time efficiency. Figure 5.6 shows the graph for the total processing time. As seen, in

Eclipse, at k = 16 (the system-wide term list T (k) has 6,772 terms), Bugzie is four times faster

than at k = 5, 000 (T (k) has 193,862). Moreover, the processing time is also linear with respect

www.manaraa.com

26

Figure 5.4: Top-1 Accuracy - Various Term Selection

www.manaraa.com

27

Figure 5.5: Top-5 Accuracy - Various Term Selection

www.manaraa.com

28

Figure 5.6: Processing Time - Various Term Selection

to the cache size of selected terms, showing that Bugzie is scalable well to large projects.

In Apache case, accuracy does not reach its highest point until k = 300. Examining the

dataset, we found that Apache has a large number of developers (1,695), a medium number of

bug reports (43,162), and a large number of terms (110,231). To correlate well a developer’s

expertise toward a bug report, Bugzie needs more terms than other subjects.

5.4 Selection of Developers and Terms

To evaluate the impacts of both types of selection (i.e, Candidates and Terms Selection), we

conducted another experiment and tuned the model with different sizes of developer cache and

term cache to get the better results. For each subject system in Table 2.1, we ran Bugzie on

all datasets with all combinations of the best values we discovered in the previous experiments

as the model’s parameters/configurations. Tables 5.1, 5.2, and 5.3 show the accuracy and the

www.manaraa.com

29

total processing time with different parameters for 3 subject systems: Eclipse, Firefox, and

FreeDesktop.

Tuning Parameters Top -1 Top-2 Top-3 Top-4 Top-5 Time

x = 40%, k = 16 45.0 61.2 71.2 78.2 83.2 12:00

x = 100%, k = All 40.5 53.7 61.7 67.5 72.0 1:39:12

Table 5.1: Eclipse: Accuracy - Various Parameters

Tuning Parameters Top -1 Top-2 Top-3 Top-4 Top -5 Time

x = 10%, k = 10 34.6 50.9 61.8 70.3 76.7 6:16

x = 10%, k = 17 33.8 50.4 61.8 70.3 76.8 8:57

x = 10%, k = 18 33.6 50.3 61.7 70.2 76.7 9:51

x = 20%, k = 10 34.1 50.5 61.8 70.7 77.7 9:17

x = 20%, k = 17 33.2 50.1 61.8 70.8 77.8 12:04

x = 20%, k = 18 33.0 49.9 61.7 70.8 77.7 13:10

x = 100%, k = All 28.0 44.7 55.8 64.1 70.7 1:50:04

Table 5.2: FireFox: Accuracy - Various Parameters

Tuning Parameters Top -1 Top-2 Top-3 Top-4 Top -5 Time

x = 40%, k = 7 50.5 65.5 72.4 76.9 79.9 1:08

x = 40%, k = 9 50.9 65.3 72.0 76.4 79.3 1:39

x = 90%, k = 7 50.2 65.2 72.5 77.2 80.3 2:07

x = 90%, k = 9 50.7 65.3 72.4 76.8 79.8 3:02

x = 100%, k = All 47.1 61.7 69.1 74.3 77.9 20:35

Table 5.3: FreeDesktop: Accuracy - Various Parameters

As seen, Bugzie could be tuned to achieve very high levels of accuracy and efficiency. For

example, for Eclipse, the best configured model processes the whole Eclipse’s bug dataset

(with around 178K bug records and 2K developers) in only 12 minutes and achieve 83% top-

5 prediction accuracy. That is about 9 times faster, and 11% more accurate than the base

model (x = 100% and all terms). For FireFox, the respective numbers are 12 minutes, 78%

top-5 accuracy, 9 times faster and 7% more accurate than the base model (Table 5.2). For

FreeDesktop, configured model is 10 times faster than the base model with 3% higher accuracy

(Table 5.3).

www.manaraa.com

30

Tables 5.4, 5.5, and 5.6 shows top-1 and top-5 best accuracy, and the total processing time,

respectively for all datasets in Table 2.1 when we ran Bugzie with four types of configurations:

base model with all developers and all terms (Column Base), the one with candidate selection

(Column C.S.), the one with term selection (Column T.S.), and the one with both (Column

Both).

Project Base C.S T.S Both

FireFox 28.0 30.0 32.1 34.6

Eclipse 40.5 40.9 42.6 45.0

Apache 39.8 39.8 39.8 39.8

Netbeans 26.3 26.3 31.8 32.3

FreeDesktop 47.1 47.3 51.2 51.2

Gcc 48.6 48.7 48.6 48.7

Jazz 28.4 28.4 31.3 31.3

Table 5.4: Top-1 Prediction Accuracy (%)

Project Base C.S T.S Both

FireFox 70.7 72.4 73.9 77.8

Eclipse 72.0 72.7 80.1 83.2

Apache 75.0 74.9 75.0 75.0

Netbeans 54.2 59.5 60.4 61.3

FreeDesktop 77.9 78.0 81.1 81.1

Gcc 79.2 79.3 79.2 79.6

Jazz 72.6 72.6 75.3 75.3

Table 5.5: Top-5 Prediction Accuracy (%)

Project Base C.S T.S Both

FireFox 1:50:04 31:24 24:14 12:04

Eclipse 1:39:12 50:47 26:28 12:00

Apache 1:08:23 46:24 1:05:00 36:59

Netbeans 17:04 11:51 4:49 2:30

FreeDesktop 20:35 17:26 3:03 2:07

Gcc 14:37 7:08 11:44 7:08

Jazz 24:45 21:12 1:37 1:37

Table 5.6: Processing Time Comparison

Generally, the top-5 accuracy achieves the best results in the range of 75-83% for all projects

www.manaraa.com

31

(except for NetBeans - 61.3%). That is, approximately in five out of six cases, the correct fixer

is in Bugzie’s recommending list of five developers. The best results for top-1 accuracy are

from 31-51%. That is, in one out of 2-3 cases, the single recommended developer by Bugzie is

actually the fixer of the given bug report. Importantly, comparing with the base model, the

models with tuned parameters (C.S., T.S., and Both) significantly improve time efficiency, while

maintaining the high levels of accuracy. Even in five out of seven systems, tuned parameters

help increase top-1 accuracy levels from 3-7% and top-5 ones from 3-11%.

5.5 Comparison Results

This section presents our evaluation result to compare Bugzie with existing state-of-the-art

approaches. For the comparison purpose, we used Weka [38] to re-implement the existing state-

of-the-art approaches [12, 2, 7, 28] with the same experimental setup and with the descriptions

of their approaches in their papers. Cubranic and Murphy [12] use Naive Bayes. Anvik et

al. [2] employ SVM, Naive Bayes, and C4.5’s classifiers. Bhattacharya and Neamtiu [7] use

Naive Bayes and Bayesian network with and without incremental learning. We re-implemented

Matter et al. [28]’s vector-space model (VSM) according to their paper. For comparison, the

terms were extracted only from the bug reports.

Because some machine-learning approaches implemented in Weka (e.g. C4.5) can not scale

up to the full datasets, we prepared smaller datasets, which have 3-year histories of the full

datasets (see Table 5.7). Tables 5.8 and 5.9 show the comparison result in accuracy for the top-1

and top-5 recommendation. Training and prediction time are given in Tables 5.10 and 5.11.

Project Time Record Fixer Term

Firefox 01-01-2008 to 10-28-2010 77,236 1,682 85,951

Eclipse 01-01-2008 to 10-28-2010 69,829 1,510 103,690

Apache 01-01-2008 to 01-01-2011 28,682 1,354 80,757

NetBeans 01-01-2008 to 11-01-2010 23,522 380 42,797

FreeDesktop 01-01-2008 to 12-05-2010 10,624 161 37,596

Gcc 01-01-2008 to 10-28-2010 6,865 161 20,279

Jazz 06-01-2005 to 06-01-2008 34,228 156 39,771

Table 5.7: 3-Year Fixing History Data

www.manaraa.com

32

Project NB InB BN InBN C4.5 SVM VSM Bugzie

Firefox 19.8 21.7 12.9 13.2 24.1 25.7 13.4 29.9

Eclipse 23.7 25.9 12.2 14.1 23.8 27.4 12.2 38.9

Apache 24.3 24.7 11.3 11.6 21.6 26.2 12.0 40.0

NetBeans 16.8 2.7 7.2 5.8 17.9 21.8 8.0 29.2

FreeDesktop 37.1 38.1 31.8 32.6 35.3 42.2 23.2 52.7

Gcc 32.8 33.3 44.2 45.6 39.3 43.0 10.2 45.7

Jazz 19.9 20.4 22.6 22.7 20.5 27.9 6.4 30.0

Table 5.8: Comparison of Top-1 Prediction Accuracy (%)

Project NB InB BN InBN C4.5 SVM VSM Bugzie

Firefox 43.5 45.8 29.4 30.5 32.6 54.8 33.6 71.8

Eclipse 47.1 49.8 27.9 31.9 33.0 53.0 30.9 71.7

Apache 45.3 46.0 26.6 28.4 32.4 47.6 30.7 78.0

NetBeans 38.5 11.6 21.9 18.9 26.9 45.2 20.8 59.8

FreeDesktop 63.5 65.2 57.2 59.1 47.9 69.0 54.5 80.0

Gcc 71.3 72.5 69.6 71.5 57.5 77.0 37.3 88.8

Jazz 50.3 50.1 55.4 55.8 34.6 67.4 18.9 73.2

Table 5.9: Comparison of Top-5 Prediction Accuracy (%)

As seen, Bugzie consistently outperforms other approaches both in term of prediction ac-

curacy and time efficiency for all subjects. For example, for Eclipse, in term of top-5 accuracy,

the second best model is SVM, which has almost 18 hours of processing time and achieves 53%

top-5 accuracy, while Bugzie takes only 22 minutes and achieves 72% top-5 accuracy. That

is, Bugzie is about 49 times faster and relatively 19% more accurate. In term of processing

time, the second best model for Eclipse is VSM, which takes 14 hours and achieves 31% top-5

accuracy, i.e. it is 38 times slower, and 41% less accurate than Bugzie. Generally, ML-based

approaches takes from hours to days (even almost a month) to finish training as well as pre-

dicting. Bugzie has its training time of tens of minutes to half an hour and prediction time of

only seconds, while still achieves higher accuracy.

Decision tree approach (C4.5) has low time efficiency: it takes nearly 28 days for training on

Eclipse dataset (with about 70K bug reports). Naive Bayes model takes less time for training

(around 9 hours), but much more time for recommending (5.5 days). It is also less accurate

than Bugzie: 24% versus 39% (top-1) and 47% versus 72% (top-5). It is similar for Bayesian

www.manaraa.com

33

Network (15 hours for training and 7.5 days for predicting, with 13% and 28% of top-1 and

top-5 accuracy).

Generally, the corresponding accuracy of incremental NB and BN is from 7-21% and 15-38%

less than Bugzie for top-1 and top-5 prediction, respectively.

Project NB InB BN InBN C4.5 SVM VSM Bugzie

Firefox 9 h 22 h 12 h 33 h 26 d 6 h 42 m 28 m

Eclipse 9 h 37 h 15 h 2 d 28 d 6 h 39 m 21 m

Apache 3 h 8 h 7.5 h 19 h 25 d 2.5 h 1 m 17 m

NetBeans 1 h 4 h 2 h 6 h 10 d 1 h 14 m 10 m

FreeDesktop 18 m 39 m 27 m 1 h 2 d 19 m 13 m 6 m

Gcc 5 m 14 m 8 m 22 m 27 h 9 m 13 m 5 m

Jazz 3 h 4 h 3.5 h 6 h 22 h 4 h 2 m 9 m

Table 5.10: Comparison of Training Time (s: seconds, m: minutes, h:

hours, d: days)

Project NB InB BN InBN C4.5 SVM VSM Bugzie

Firefox 3 d 3 d 4 d 4.5 d 9 m 8 h 8 h 30 s

Eclipse 5.5 d 5 d 7.5 d 8 d 14 m 12 h 13 h 18 s

Apache 10 h 2 d 25 h 4 d 1 m 48 m 6 h 31 s

NetBeans 14 h 11 h 22 h 15 h 2 m 1 h 1.5 h 5 s

FreeDesktop 4 h 4 h 6 h 5.5 h 48 s 15 m 23 m 3 s

Gcc 40 m 40 m 35 m 25 m 14 s 4 m 8 m 4 s

Jazz 6.5 h 6.5 h 7 h 7 h 10 s 31 m 5 m 5 s

Table 5.11: Comparison of Prediction Time (s: seconds, m: minutes, h:

hours, d: days)

www.manaraa.com

34

5.6 Discussions and Comparisons

Our results suggest that machine learning classification models are less efficient for very

large numbers of bug records/fixers. Especially, tree induction models (e.g. C4.5) require all

training data to fit in the memory to be efficient [18].

SVM is not well-suited since it is specialized towards classification problems than ranking

problems. Using SVM approach, for each developer d, we need to train a classifier SVMd

to distinguish the bug reports that d is able to fix (e.g. SVMd(B)) = 1) and the others

(e.g. SVMd(B)) = −1). To adjust to a ranking problem, we need another measure Rd(B) to

measure the confidence on the event that d is able to fix B, which is computed as the distance

from the vector representing B to the separated hyperplan of SVMd. Since the classifiers are

trained independently, the ranking functions Rd() are not trained competitively together to

reflect the actual ranking they should provide (e.g. if both d and d′ are considered capable to

a bug report B , Rd(B) > Rd′(B) might not imply that d is more capable than d′ in fixing B).

In contrast, Bugzie actually learns/models the ranking functions, i.e. µt(d) and µB(d). Thus,

µB(d) > µB(d′) does imply that d is more capable than d′ in fixing B.

Bayesian models (Bayesian Network) and similarity-based models (e.g. Vector Space

Model) can be used for a ranking problem. Using Naive Bayes (NB), given a bug report

B as a set of terms, the probability that this bug report belongs to the class of bug reports

associated with a developer d is:

P (d|B) ∝ P (d).P (B|d) = P (d).
∏
t∈B

P (t|d)

In this formula, P (d) is the probability of observing developer d in the fixing data and

P (t|d) is the probability of observing term t in the bug reports fixed by d. This formula is

used to rank the developers for recommendation.

However, there are two reasons that NB is less suited for automatic bug triaging. First, the

probability of assigning developer d to a bug report P (d|B) is proportional to P (d). That is,

the more frequently d fixes, the higher chance (s)he is assigned to a new report. This might not

fit well with the locality of fixing activity. For example, in practice, there often happens that

www.manaraa.com

35

a developer has been active in bug-fixing for certain technical areas in a period of time, and

moves on to other areas. He might have extensive past fixing activities, but does not handle

those technical issues anymore. NB still tends to give her/him higher probability due to his

past activities. In contrast, Bugzie will not have her/him in its candidate list, if it finds that

(s)he has not fixed any bug for a long time.

Second, an important assumption in NB is the independence of the features (i.e. terms),

which gives:

P (B|d) =
∏
t∈B

P (t|d)

while in bug reports, the terms, especially those relevant to a technical issue, tend to co-

occur, i.e. are highly correlated. Let d be a developer with fixing expertise on version control,

t = repository and t′ = cvs be two terms associated with that concern. t and t′ highly co-

occur in the bug reports on version control. Assume that, d fixes 100 bug reports, 70 (of 100)

containing t, 60 containing t′ and 50 containing both of them. Thus, we have P (t|d) = 0.7,

P (t′|d) = 0.6 and P (t, t′|d) = 0.5. However, for a bug report B containing both terms, NB will

have P (B|d) = P (t|d)∗P (t′|d) = 0.7∗0.6 = 0.42, which is likely different from P (t, t′|d). Thus,

the feature independence assumption reduces the probability P (B|d). Moreover, that product

formula is also sensitive to noises. For example, if B contains t and a misspelled word e, which

rarely occurs in bug reports fixed by d (P (e|d) is very small). Then, P (B|d) = P (t|d)∗P (e|d) is

much smaller than P (t|d) (e.g. P (e|d) = 0.1. Then, P (B|d) = P (t|d)∗P (e|d) = 0.7∗0.1 = 0.07,

much smaller than P (t|d) = 0.7).

For Bayesian Network models, the assumption for feature independence is not enforced.

However, they still face the same issue, i.e. P (d|B) is proportional to P (d). Thus, BN models

are not well suited with the locality of fixing activity.

Vector Space Model (VSM) is IR-based. VSM collects all terms in bug reports into a corpus.

It builds the term-fixer matrix in which a fixer is profiled by a vector whose entries equal to the

frequencies of the corresponding terms in his fixed bug reports. Developers whose vectors have

highest similarity to the vector for a new report are suggested. VSM is less suitable for bug

triaging than Bugzie. First, term selection is less flexible because VSM requires all vectors to

www.manaraa.com

36

have the same size. Also, cosine similarity might not be a proper similarity measure of fixing

capability because it does not take into account the lengths of vectors in comparison, i.e. a

developer’s extensive fixing experience could be overlooked.

Here is a simple example. Assume that a system has two aspects: data processing and

user interface, with corresponding two terms t = database and t′ = gui. Developer d has fixed

1,000 bug reports on database and 500 bug reports on gui. Thus, he has a vector-based profile

v =< 1000, 500 >. Developer d′ has fixed only 2 bug on database, thus has profile v′ =< 2, 0 >.

Now, given a bug report B on database, which has a representing vector B =< 1, 0 >. Then,

computing cosine similarity gives cos(v,B) ≈ 0.89 and cos(v′, B) = 1. That means, cosine

similarity considers d′ a better match to B than d, thus, VSM would assign d′ to B. However,

d should be more capable toward B, given his extensive experience on that aspect.

In contrast, Bugzie takes this into account. We have nd = 1, 000+500, nt = 1, 000+2, and

nd,t = 1, 000, thus, µt(d) = 1, 000/(1, 500 + 1, 002 − 1, 000) ≈ 0.67. For d′, we have nd′ = 2,

nd′,t = 2, thus µt(d
′) = 2/(2 + 1, 002− 2) ≈ 0.002. Since B contains only t, µB(d) = µt(d) and

µB(d′) = µt(d
′). Therefore, Bugzie assigns d to B, because µB(d) is much higher than µB(d′).

In brief, comparing to those models, Bugzie is better suited to bug triaging because

it is adapted to the ranking nature of the problem, the locality of fixing activity, the co-

occurrences (i.e. dependency) of technical terms associated with the same technical aspect,

and the evolutionary nature of software development. In addition to significantly higher accu-

racy, Bugzie also has significantly higher efficiency than existing approaches because 1) train-

ing/recommending relies on simple arithmetic calculations on counting values (Chapter 3),

2) updating is fast and truly incremental, and 3) selections of terms and developers reduce

processing time.

In Bugzie, technical terms are selected based on their levels of direct association to devel-

opers. One could use other feature selection methods such as information theoretic measures

(e.g. information gain). Topic-modeling [8] could be used to identify technical topics and

associated terms. Also, other developers’ selection strategies [32] could be applied.

www.manaraa.com

37

5.7 Threats to Validity

The re-produced result of existing approaches: We re-implemented existing ap-

proaches via Weka [38] and via our own code, rather than using their tools, which are not

available. However, our re-implementation was based strictly on the descriptions in their pa-

pers. Furthermore, Weka tool might not be always optimized for best time-efficiency.

The correctness of bug database: there might be some bugs are closed and then

recurring, i.e. they are not actually/comprehensively fixed by the latest assigned fixer(s).

www.manaraa.com

38

CHAPTER 6 Related Work and Conclusions

6.1 Related Work

There are several approaches that apply machine learning (ML) and/or information re-

trieval (IR) to automatic bug triaging. The first approach along that line is from Cubranic

and Murphy [12]. The titles, descriptions, and keywords are extracted from bug reports to

build a classifier for developers using Naive Bayes technique. The classifier then suggests po-

tential fixers based on the classification of a new bug report. Their prediction accuracy is up

to 30% on an Eclipse’s bug report data set from Jan to Sep-2002. Anvik et al. [2] also follow

similar ML approach and improve Cubranic et al.’s work by filtering out invalid data such as

unfixed bug reports, no-longer-working or inactive developers. With three different classifiers

using SVM, Naive Bayes, and C4.5, they achieved a precision of up to 64%. Comparing to

those ML approaches, Bugzie has several departure points. First, Bugzie addresses bug triag-

ing as a ranking problem, instead of a classification one. Thus, Bugzie is able to more precisely

provide the ranked list of potential fixers, while the outcome of a classifier has the assignment

of a bug report to one specific developer. Additional and less accurate ranking scheme was

used in their approaches (Section 5.6). Second, simple fuzzy set computation with its counting

values (Chapter 3) is much more time efficiency than ML approaches in training/prediction.

Importantly, Bugzie’s truly incremental learning can further improve efficiency. Third, Bugzie

takes into account the co-occurrences of terms for the same technical issue. Finally, taking

advantage of the locality of fixing activity and term selection, Bugzie copes well with software

evolution and improves its accuracy and efficiency.

Another approach is from Bhattacharya and Neamtiu [7]. They use ML with Bayesian

www.manaraa.com

39

Network and Naive Bayes. Those models are less precise than Bugzie since they cannot handle

co-occurrent technical terms, and suffer other limitations as in ML approaches (Section 5.6).

To improve ranking, they utilize bug tossing graphs, which represent the re-assignments of

a bug to multiple developers before it gets resolved (often called bug tossing). As shown,

Bugzie outperformed both (incremental) NB and BN from 6-20% and 13-35% for top-1 and

top-5 accuracy, respectively. Despite of incremental learning, for NB and BN, their training

and prediction time for Eclipse is from 9-15 hours and 5.5-7.5 days, while Bugzie takes only

minutes to an hour. Bugzie is also able to support developer and term selections.

The idea of bug tossing graphs was introduced by Jeong et al. [21]. Their Markov-based

model learns from the past the patterns of bug tossing from developers to others after a bug

was assigned, and it uses such knowledge to improve bug triaging. Their goal is more toward

reducing the lengths of bug tossing paths, rather than addressing the question of who should

fix a given bug as in an initial assignment. We will explore the combination of Bugzie and bug

tossing graphs for further improvement.

Lin et al. [26] use ML with SVM and C4.5 classifiers on both textual and non-text fields (e.g.

bug type, submitter, phase ID, module ID, and priority). Running on a proprietary project

with only 2,576 bug records, their models achieve the accuracy of up to 77.64%. The accuracy

is 63% if module IDs were not considered. Bugzie has higher accuracy and could integrate

non-text fields for further improvement. Podgurski et al. [31] utilize ML to classify/prioritize

bug reports, but not directly support bug triaging. Di Lucca et al. [27] use Bayesian and VSM

to classify maintenance requests. Such classification can be used in bug triaging.

Other researchers use IR for automatic bug triaging. Canfora and Cerulo [10, 9] use the

terms of fixed change requests to index source files and developers, and query them as a new

change request comes for bug triaging. The accuracy was not very good (10-20% on Mozilla

and 30-50% on KDE).

Matter et al. [28] introduce Develect, a VSM model for developers’ expertise by extracting

terms in their contributed code. A developer’s expertise is represented by a vector of frequencies

of terms appearing in her/his source files. The vector for a new bug report is compared with the

www.manaraa.com

40

ones for developers for bug triaging. Testing on 130,769 bug reports in Eclipse, the accuracy

is not as high as Bugzie (up to 71% with top-10 recommendation list). Compared to Develect,

Bugzie’s fuzzy sets first enable more flexible computation and modeling of developers’ bug-

fixing expertise. All vectors in Develect must have the same length. With the fuzzy set nature,

Bugzie allows to select a small yet significant set of terms to represent each developer. Second,

Develect assumes the independence of features/terms.

Moreover, as a project evolves, VSM must recompute the entire vector set, while Bugzie

incrementally updates its data with high efficiency.

Baysal et al. [4] proposed to enhance VSM in modeling developers’ expertise with preference

elicitation and task allocation. Rahman et al. [32] measure the quality of assignment by

matching the requested (from bug reports) and available (from developers) competence profiles.

For automatic support, they need reverse engineering of developers’ competence profiles [32].

They start with profiling each bug and developer based on competencies and skills, then they

used a greedy search algorithm to find the best suitable developer who has the shortest distance

and available within a specified look-ahead time. Their approach is extremely difficult [32].

Other researchers categorize/assess bug reports based on their quality, severity levels, du-

plications, or relations [5, 34, 36, 33, 19, 20, 29, 6, 25, 15]. Automatic tools were built to

predict the fixing time and effort for a bug report [22, 37].

Our preliminary model on Bugzie [35] represents developers’ bug-fixing expertise with all

extracted terms and cannot accommodate well the locality of their fixing activities and software

evolution. Thus, it is not well-suited for the evolutionary nature of software development.

Moreover, preliminary results were only on Eclipse data with 3-years of development and were

not as accurate and efficient as those of the model in this paper. Fuzzy set theory was also

used in automatic tagging [1].

6.2 Conclusions

We propose Bugzie, a fuzzy set and cache-based approach for automatic bug triaging. A

fuzzy set represents the set of capable developers of fixing the bugs related to a technical term.

www.manaraa.com

41

The membership score of a developer to such fuzzy set is calculated based on her/his fixed bug

reports, and is incrementally updated. Such fuzzy sets are computed for each term in a new

bug report and are union’ed to find capable fixers. With flexible caching of developers and

terms, Bugzie can accommodate the locality of fixing activity, the co-occurrences of the terms

of same technical aspects, and software evolution.

Our evaluation results on large-scale subject systems show that Bugzie achieves signifi-

cantly higher levels of efficiency and correctness than existing state-of-the-art approaches. For

example, it could process the whole Eclipse bug dataset, containing around 178K bug reports

and having more than 2,100 active developers, in 12 minutes with 45% and 83% accuracy on

top-1 and top-5 recommendations, respectively. That means, in almost half of the cases, the

single recommended developer is the actual fixer of the given bug report, and in 83% of the

cases, (s)he is in the list of 5 recommended developers.

In 7 subject projects, Bugzie’s accuracy for top-1 and top-5 recommendations is generally

in the range of 31-51% and 70-83%, respectively. It selects around 10-40% of recent fixers as

candidates, and characterizes/profiles each candidate with 3-20 most significant terms. Im-

portantly, while existing approaches take from hours to days (even almost a month) to finish

training as well as predicting, in Bugzie, training time is from tens of minutes to an hour,

while it still consistently achieves higher accuracy. Bugzie’s top-1 and top-5 accuracy levels

are higher than those of the second best approach from 4-15% and 6-31%, respectively.

www.manaraa.com

42

Bibliography

[1] Jafar M. Al-Kofahi, Ahmed Tamrawi, Tung Thanh Nguyen, Hoan Anh Nguyen, and

Tien N. Nguyen. Fuzzy set approach for automatic tagging in evolving software. In

Proceedings of the 2010 IEEE International Conference on Software Maintenance, ICSM

’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[2] John Anvik, Lyndon Hiew, and Gail C. Murphy. Who should fix this bug? In Proceedings

of the 28th international conference on Software engineering, ICSE ’06, pages 361–370,

New York, NY, USA, 2006. ACM.

[3] Apache bug tracking system. https://issues.apache.org/jira/.

[4] O. Baysal, M.W. Godfrey, and R. Cohen. A bug you like: A framework for automated

assignment of bugs. In Program Comprehension, 2009. ICPC ’09. IEEE 17th International

Conference on, pages 297 –298, May 2009.

[5] N. Bettenburg, R. Premraj, T. Zimmermann, and Sunghun Kim. Duplicate bug reports

considered harmful...really? In Software Maintenance, 2008. ICSM 2008. IEEE Interna-

tional Conference on, pages 337 –345, 10 2008.

[6] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and

Thomas Zimmermann. What makes a good bug report? In Proceedings of the 16th ACM

SIGSOFT International Symposium on Foundations of software engineering, SIGSOFT

’08/FSE-16, pages 308–318, New York, NY, USA, 2008. ACM.

[7] Pamela Bhattacharya and Iulian Neamtiu. Fine-grained incremental learning and multi-

feature tossing graphs to improve bug triaging. In Proceedings of the 2010 IEEE Inter-

www.manaraa.com

43

national Conference on Software Maintenance, ICSM ’10, pages 1–10, Washington, DC,

USA, 2010. IEEE Computer Society.

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J.

Mach. Learn. Res., 3:993–1022, March 2003.

[9] Gerardo Canfora and Luigi Cerulo. How software repositories can help in resolving a new

change request. In In Workshop on Empirical Studies in Reverse Engineering, 2005.

[10] Gerardo Canfora and Luigi Cerulo. Supporting change request assignment in open source

development. In Proceedings of the 2006 ACM symposium on Applied computing, SAC

’06, pages 1767–1772, New York, NY, USA, 2006. ACM.

[11] Kevin Crowston and Barbara Scozzi. Coordination practices within floss development

teams the bug fixing process. In In Computer Supported Acitivity Coordination, pages

21–30. INSTICC Press, 2004.

[12] Davor Cubranic. Automatic bug triage using text categorization. In In SEKE 2004: Pro-

ceedings of the Sixteenth International Conference on Software Engineering & Knowledge

Engineering, pages 92–97. KSI Press, 2004.

[13] Eclipse bug tracking system. https://bugs.eclipse.org/bugs/.

[14] Firefox bug tracking system. https://bugzilla.mozilla.org/.

[15] Michael Fischer, Martin Pinzger, and Harald Gall. Analyzing and relating bug report

data for feature tracking. In Proceedings of the 10th Working Conference on Reverse

Engineering, WCRE ’03, pages 90–, Washington, DC, USA, 2003. IEEE Computer Society.

[16] Freedesktop bug tracking system. https://bugs.freedesktop.org/.

[17] Gcc bug tracking system. http://gcc.gnu.org/bugzilla/.

[18] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 2005.

www.manaraa.com

44

[19] L. Hiew. Assisted detection of duplicate bug reports. Master’s thesis, The University of

British Columbia, Vancouver, Canada, May 2006.

[20] Pieter Hooimeijer and Westley Weimer. Modeling bug report quality. In Proceedings of the

twenty-second IEEE/ACM international conference on Automated software engineering,

ASE ’07, pages 34–43, New York, NY, USA, 2007. ACM.

[21] Gaeul Jeong, Sunghun Kim, and Thomas Zimmermann. Improving bug triage with bug

tossing graphs. In Proceedings of the the 7th joint meeting of the European software en-

gineering conference and the ACM SIGSOFT symposium on The foundations of software

engineering, ESEC/FSE ’09, pages 111–120, New York, NY, USA, 2009. ACM.

[22] Sunghun Kim and E. James Whitehead, Jr. How long did it take to fix bugs? In

Proceedings of the 2006 international workshop on Mining software repositories, MSR ’06,

pages 173–174, New York, NY, USA, 2006. ACM.

[23] Sunghun Kim, Thomas Zimmermann, E. James Whitehead Jr., and Andreas Zeller. Pre-

dicting faults from cached history. In Proceedings of the 29th international conference

on Software Engineering, ICSE ’07, pages 489–498, Washington, DC, USA, 2007. IEEE

Computer Society.

[24] G.J. Klir and Bo Yuan. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice

Hall, 1995.

[25] Andrew J. Ko, Brad A. Myers, and Duen Horng Chau. A linguistic analysis of how people

describe software problems. In Proceedings of the Visual Languages and Human-Centric

Computing, pages 127–134, Washington, DC, USA, 2006. IEEE Computer Society.

[26] Zhongpeng Lin, Fengdi Shu, Ye Yang, Chenyong Hu, and Qing Wang. An empirical study

on bug assignment automation using chinese bug data. In Proceedings of the 2009 3rd

International Symposium on Empirical Software Engineering and Measurement, ESEM

’09, pages 451–455, Washington, DC, USA, 2009. IEEE Computer Society.

www.manaraa.com

45

[27] G. A. Di Lucca, M. Di Penta, and S. Gradara. An approach to classify software mainte-

nance requests. In In Proc., International Conference on Software Maintenance (ICSM,

pages 93–102. IEEE Computer Society, 2002.

[28] Dominique Matter, Adrian Kuhn, and Oscar Nierstrasz. Assigning bug reports using a

vocabulary-based expertise model of developers. In Proceedings of the 2009 6th IEEE

International Working Conference on Mining Software Repositories, MSR ’09, pages 131–

140, Washington, DC, USA, 2009. IEEE Computer Society.

[29] T. Menzies and A. Marcus. Automated severity assessment of software defect reports. In

Software Maintenance, 2008. ICSM 2008. IEEE International Conference on, pages 346

–355, 10 2008.

[30] Netbeans bug tracking system. http://netbeans.org/bugzilla/.

[31] Andy Podgurski, David Leon, Patrick Francis, Wes Masri, Melinda Minch, Jiayang Sun,

and Bin Wang. Automated support for classifying software failure reports. In Proceedings

of the 25th International Conference on Software Engineering, ICSE ’03, pages 465–475,

Washington, DC, USA, 2003. IEEE Computer Society.

[32] Md. Mainur Rahman, Guenther Ruhe, and Thomas Zimmermann. Optimized assignment

of developers for fixing bugs an initial evaluation for eclipse projects. In Proceedings of the

2009 3rd International Symposium on Empirical Software Engineering and Measurement,

ESEM ’09, pages 439–442, Washington, DC, USA, 2009. IEEE Computer Society.

[33] Per Runeson, Magnus Alexandersson, and Oskar Nyholm. Detection of duplicate defect

reports using natural language processing. In Proceedings of the 29th international con-

ference on Software Engineering, ICSE ’07, pages 499–510, Washington, DC, USA, 2007.

IEEE Computer Society.

[34] Chengnian Sun, David Lo, Xiaoyin Wang, Jing Jiang, and Siau-Cheng Khoo. A discrim-

inative model approach for accurate duplicate bug report retrieval. In Proceedings of the

www.manaraa.com

46

32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE

’10, pages 45–54, New York, NY, USA, 2010. ACM.

[35] Ahmed Tamrawi, Tung Thanh Nguyen, Jafar M. Al-Kofahi, and Tien N. Nguyen. Fuzzy

set-based automatic bug triaging. ICSE ’11 (NIER). ACM (To appear), 2011.

[36] Xiaoyin Wang, Lu Zhang, Tao Xie, John Anvik, and Jiasu Sun. An approach to detecting

duplicate bug reports using natural language and execution information. In Proceedings

of the 30th international conference on Software engineering, ICSE ’08, pages 461–470,

New York, NY, USA, 2008. ACM.

[37] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. How long will

it take to fix this bug? In Proceedings of the Fourth International Workshop on Mining

Software Repositories, MSR ’07, pages 1–, Washington, DC, USA, 2007. IEEE Computer

Society.

[38] Weka: Data mining software in java. http://www.cs.waikato.ac.nz/ml/weka/.

[39] Bug tracking system. http://en.wikipedia.org/wiki/Bug tracking system.

[40] Wvtool: Word vector tool. http://sourceforge.net/projects/wvtool/.

	2011
	Fuzzy set and cache-based approach for bug triaging
	Ahmed Tamrawi
	Recommended Citation

	DEDICATION
	TABLE OF CONTENTS

	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	Introduction
	An Overview of Bug Reports
	Bugzie Overview
	Thesis Contribution
	Thesis Organization

	Empirical Study and Motivation
	Data Collection
	Bug Reports Pre-Processing

	A Motivating Example
	Implications and our Approach
	Locality of Fixing Activity
	Implications

	Bugzie Model
	Overview
	Association of Fixer and Term
	Fixer Candidate and Term Selection
	Selection of Fixer Candidates
	Selection of Descriptive Terms

	Bugzie's Algorithms
	Initial Training
	Recommending
	Updating

	Empirical Evaluation
	Experiment Setup
	Selection of Fixer Candidates
	Selection of Terms
	Selection of Developers and Terms
	Comparison Results
	Discussions and Comparisons
	Threats to Validity

	Related Work and Conclusions
	Related Work
	Conclusions

	Bibliography

